Математика ғылымының ең ежелгі салаларының бірі геометрия. Геометрия, математика тарихында үлкен орын алады және геометриялық фигуралар үшбұрыш, төртбұрыш, шеңбер, призма, пирамида, және т б. туралы ғылым



бет8/30
Дата17.06.2018
өлшемі2,51 Mb.
1   ...   4   5   6   7   8   9   10   11   ...   30

Тең бүйірлі үшбұрыш
Егер үшбұрыштың екі қабырғасы тең болса, ол тең бүйірлі үшбұрыш деп аталады. Бұл тең қабырғалар үшбұрыштың бүйір қабырғалары деп, ал үшінші қабыргасы үшбұрыштың табаны деп аталады.

9-суретте тең бүйірлі АВС үшбұрышы кескінделген. АС мен ВС - оның бүйір қабырғалары, ал АВ - табаны.



Теорема 4 (тең бүйірлі үшбұрыштың бұрыштарының қасиеті). Тең бүйірлі үшбұрыштың табанындағы бұрыштары тең болады.

Дәлелдеу. Айталық, АВС - табаны АВ болатын тең бүйірлі үшбұрыш болсын (9-сурет). Ондағы А= В екенін дәлелдейміз.

Үшбұрыштардың теңдігінің бірінші белгісі бойынша САВ үшбұрышы СВА үшбұрышына тең. Шынында да, СА = СВ, СВ = СА, С=С.

Үшбұрыштардың теңдігінен А= В екендігі шығады. Теорема дәлелденді.

Барлық қабырғалары тең болатын үшбұрыш тең қабырғалы үшбұрыш деп аталады.


Есеп 1. Тең қабырғалы үшбұрыштың барлық бұрыштары тең болатынын дәлелдеу керек.

Шешуі. Айталық, АВС - берілген тең қабырғалы үшбұрыш болсын: АВ=ВС = СА (10-сурет). АВ = ВС болғандықтан, бұл үшбұрыш табаны АС болатын тең бүйірлі үшбүрыш. 3.3 теорема бойынша С=А. ВС = СА




болғандықтан, АВС үшбұрышы табаны АВ болатын тең бүйірлі үшбүрыш болып табылады. 4-теорема бойынша А= В. Сонымен, С= А= В, яғни үшбұрыштың барлық бұрыштары тең.


Кері теорема
Теорема 5. (тең бүйірлі үшбұрыш белгісі). Егер үшбұрыштың екі бұрышы тең болса, онда ол тең бүйірлі болады.
Дәлелдеу. АВС үшбұрышында А=В болсын (11-сурет). Ол табаны АВ болатын тең бүйірлі үшбұрыш екенін дәлелдейміз.

Үшбұрыштар теңдігінің екінші белгісі бойынша АВС үшбұрышы ВАС үшбұрышына тең. Шынында да, АВ = ВА, В = А, А=В.

Үшбұрыштардың теңдігінен АС=ВС екендігі шығады. Демек, анықтама бойынша АВС - тең бүйірлі үшбұрыш. Теорема дәлелденді.


5-теорема 4-теоремаға кері теорема деп аталады. 4-теореманың қорытындысы 5-теореманың шарты болып табылады. Ал 4-теореманың шарты 5-теореманың қорытындысы болып табылады. Кез келген теоремаға кері теорема бар бола бермейді, яғни берілген теорема дұрыс болғанымен, оған кері теорема дұрыс болмауы мүмкін. Бұны вертикаль бұрыштар туралы теореманы мысалға алып түсіндірейік. Бұл теореманы былай тұжырымдауға болады: егер екі бұрыш вертикаль бұрыштар болса, онда олар тең болады. Бұған кері теорема былай болар еді: егер екі

бұрыш тең болса, онда олар вертикаль бұрыштар болады. Әрине, бұл дүрыс емес. Тең екі бұрыштың вертикаль бұрыштар болуы тіпті де міндетті емес.


Осы теореманы дәлелдейік. АВС - барлық бұрыштары тең үшбұрыш болсын: А=В=С, А=В болғандықтан, 5-теорема бойынша АС= СВ. В=болғандықтан, 5-теорема бойынша АС = АВ. Сонымен, АВ = АС = СВ, яғни үшбұрыштың барлық қабырғалары тең. Демек, анықтама бойынша АВС - тең қабырғалы үшбұрыш.


Оқытудың жаңа технологиясын пайдалану - сапалы білім негізі
Берілген үшбұрышқа тең үшбұрыштың болатыны туралы
Оқулық бойынша өз беттеріңше қалай дайындалуға болады.
Пифагор теоремасы
Теорема 30. бұрыштьң косинусы тек оның градустың өлшеуішіне ғана тәуелді болады.
Тік бұрышты үшбұрыштың гипотенузасының квадраты катеттерініц квадраттарының қосындысына тец.
Тік бұрышты үшбұрыштарды шешу
Математика сабағын компьютер арқылы

Каталог: uploads -> doc -> 0ae2
doc -> Ғарыш әлеміне саяхат
doc -> Сабақ тақырыбы: Шерхан Мұртаза «Ай мен Айша» романы Сабақ мақсаты: ҚР «Білім туралы»
doc -> Сабақтың тақырыбы Бала Мәншүк ( Мәриям Хакімжанова) Сілтеме
doc -> Ана тілі №2. Тақырыбы: Кел, балалар, оқылық Мақсаты
doc -> Сабақ жоспары «Сәулет және дизайн» кафедрасының арнаулы пән оқытушысы, ҚР «Еуразиялық Дизайнерлер Одағының» мүшесі: Досжанова Галия Есенгелдиевна Пәні: Сурет және сұңғат өнері
doc -> Сабақ Сабақтың тақырыбы : Кіріспе Сабақтың мақсаты : «Алаштану» курсының мектеп бағдарламасында алатын орны, Алаш қозғалысы мен Алашорда үкіметі тарихының тарихнамасы мен дерекнамасына қысқаша шолу
doc -> Тәрбие сағаттың тақырыбы: Желтоқсан жаңғырығы
doc -> Сабақтың тақырыбы : Әбунасыр Әл- фараби Сабақтың мақсаты
doc -> Сабақ жоспары Тақырыбы: Үкілі Ыбырай Мектеп:№21ом мерзімі
0ae2 -> Сабақ Тақырыбы: Дауыссыз л мен р әріптері. 163-167 жаттығу. Мұғалім Сабақтың тақырыбы: Дауыссыз л мен Р. 163-167 жаттығу


Достарыңызбен бөлісу:
1   ...   4   5   6   7   8   9   10   11   ...   30


©engime.org 2017
әкімшілігінің қараңыз

    Басты бет