Даны вершины треугольника: А (-1; 2), В (3; -1) и С (0; 4). Через каждую из них провести прямую, параллельную противолежащей стороне.
Прямая проходит через точку А(-1; -9) и отсекает на отрицательной полуоси абсцисс отрезок, вдвое меньший, чем на отрицательной полуоси ординат. Составить уравнение этой прямой.
Известны уравнения сторон треугольника: . Найти длину высоты, которая проведена из вершины, лежащей на оси абсцисс.
Даны вершины четырехугольника: А (-9; 0), В (-3; 6), С (3; 4) и D (6; -3). Вычислить угол между диагоналями АС и ВD.
Две из граней куба расположены на плоскостях . Найти его объем.
Найти угол между плоскостью и плоскостью, проходящей через точки М (1; 1; 1) и N (2; 3; -1) параллельно вектору ={0; -1; 2}.
Составить уравнение плоскости АВС, где А (-3; -3; 1), В (-4; -2; -2), С (-5; -1; 0), и указать особенность в её расположении. Найти углы, образуемые перпендикуляром, опущенным из начала координат к плоскости, с координатными осями.
Написать канонические уравнения прямой: .
Найти угол прямой с плоскостью .
При каком значении n прямые будут взаимно перпендикулярны?
Вершины четырехугольника находятся в точках A (-3; -5; -1), B (2; -20; 9), C (-6; 1; -2), D (-9; 10; -8). Показать, что ABCD есть трапеция и найти длины её оснований.