2006 ж №12(26 нұсқа №14)
Шардың көлемінің және оның беттерінің аудандарының сан мәндері тең. Шардың радиусын табыңыз.
Vшар= Sб.б
R3=4 R2
R=3 cм
2007ж
№13( 2 нұсқа №30)
Сыртқы диаметрі 10,7 см, ал ішкі диаметрі 8,6 см-ге тең іші қуыс шойын шардың массасын есептеп шығарыңдар. Шойын тығыздығы 7,3г/см3
AB=10,7 см
CD=8,6 см
=7,3 г/см3
m=V
R1=AB/2=10,7:2=5,35
V1=R13=*5,353=204,17
R2=CD/2=8,6:2=4,3
V2=R23=*4,33=106,009
V=V1-V2=204,17-106,009=98,161
m=V
m=7,3*98,161=716,6
№14(6 нұсқа №14)
Шардың көлемі 288см3. Шар бетінің ауданын табу керек.
V=288см3
R3=288
R=6
S=4R2=4*62=144
2009ж
№15(9 нұсқа №18)
Шарды қиятын екі параллель жазықтық шар центрінің екі жағында орналасқан. Қималардың аудандары 144 және 25. Жазықтықтардың арасы 17 см болса, шар бетінің ауданын табу керек.
AB=17см
S1=144
S2=25
Sшар-?
R12=144
BC=R1=12
R22=25
AD=R2=5
AO=x, BO=17-x
CO2=BO2+BC2
DO2=AO2+AD2
DO=CO=R
(17-x)2+144=x2+25
289-34x+x2+144= x2+25
34x=408
X=12
AO=12, DO2=144+25=169
DO=13
S=4*R2=676
№16 (18 нұсқа №24)
Шардың өзара перпендикуляр екі қимасының ортақ хордасының ұзындығы 12 см. Қималардың аудандары 100және 64 болса, шардың радиусын табыңыз.
S1=100 R1=10
S2=64 R2=8
AB=12 см.
AKD; KD2=AD2-AK2
KD2=100-36=64
KD=8
BKC
KC2=BC2-KB2
KC2=64-36=28
KC=2
DKO;
KO2=KD2+DO2
KO2=64+28=92
AKO
AO2=AK2+KO2
AO2=36+92=128
R=
2010ж
№17 (15 нұсқа №25)
Сфера центрінің бір жағында орналасқан, сфераны қиятын параллель жазықтықтардың қималарының ұзындығы 10 және 24. Жазықтықтардың арасы 7 см болса, сфера бетінің ауданын табыңыз.
AB=7, C1=10 , C2=24.
Sсфера-?
2R1=10
AC=R1=5
2R2=24.
BD=R2=12
AOC;
BO=x
AO=x+7
OC2=AO2+AC2=(x+7)2+25
BOD
OD2=BO2+BD2=x2+144
OC=OD=R
(x+7)2+25= x2+144
X2+14x+49+25=x2+144
14x=70
X=5
R2= x2+144=25+144=169
R=13
S=4*R2=4*169=676
ҮІІ бөлім Цилиндр
Цилиндр деп тік төртбұрышты оның қабырғаларының бірінен айналдырғанда шығатын фигураны айтады.
V=R2H
Sб.б=2RH
Sт.б= Sб.б+2Sтаб
2003ж
№1 (7 нұсқа №21)
Биіктігі 3см-ге тең, ал осьтік қимасы шаршы болатын цилиндрдің бүйір бетінің ауданын табыңыз.
AC=H=3см
R=AB:2=3:2=1,5 см
S=2RH
S=2*1,5*3=9
№2 (13 нұсқа №11)
Цилиндр биіктігі 2 м, табан радиусы 3 см. Көлемін табыңыз.
H=2 м=200 см.
R=3 см.
V=R2H
V=*32*200=1800 см3
№3 (14 нұсқа №11)
Цилиндрдің биіктігі 6 дм, ал табанының радиусы 5дм. Цилиндрдің бүйір бетінің ауданын табыңыз.
H=6 дм, R=5дм.
S=2RH
S=2*5*6=60 дм2
№4 (16 нұсқа №11)
Цилиндрдің осьтік қимасының ауданы 24 см2. Бүйір бетінің ауданын табыңыз.
SABCD=24 см2,
Sб.б=2RH
AB=2R
AC=H
SABCD=AB*AC
Sб.б=24 см2
№5 (16 нұсқа №27)
Осьтік қимасының ауданы 30см2, ал табанының ауданы 9см2цилиндр берілген.
Көлемін табыңыз.
SABCD=30 см2,
Sтаб=9см2
Sтаб=R2
R2=9
R=3
AB=2R
AC=H
SABCD=AB*AC
2R*H=30
H=30:6=5cм
V=R2H
V=*9*5=45
№6(19 нұсқа №26)
Цилиндрдің бүйір бетінің жазбасы тік төртбұрыш. Жазбаның диогоналі d табанымен бұрыш жасайды. Цилиндрдің көлемін табыңыз.
AC=d
V-?
CD=d sin
AD=d cos
Cтаб= 2R
2R= d cos
R=
V=R2H
V=()2* d sin=cos2*sin
2004ж
№7.(3 нұсқа №30)
Цилиндрдің көлемі 112 см3, биіктігі 28 см. Осьтік қимасының диогоналінің ұзындығын табыңыз.
V=112 см3
V=R2H
H=28 см.
AD-?
R2*28=112
R2=4
R=2
AB=4
AD2=AB2+BD2
AD2=16+784=800
AD=
2006ж
№8 (19 нұсқа №14)
Цилиндрдің осьтік қимасының ауданы 70см2, ал биіктігі 7 см-ге тең. Цилиндрдің бетінің ауданын табыңыз.
AB=2R
AC=H=7 см
SABCD=AB*AC=70см2
2R*7=70
R=70:14=5cm
Sб.б=2RH=2*5*7=70
Sтаб=R2=*52=25
Sт.б=2 Sтаб+ Sб.б=50+70=120
2007ж
№9(25 нұсқа №30)
Цилиндрдің осьтік қимасының диогональдары өзара перпендикуляр. Қиманың периметрі 8а. Цилиндрдің бүйір бетінің ауданын табыңыз.
PABCD=8a
AB=2a, AC=2a
R=a,
Sб.б=2RH=2*a*2a=4a2
V=R2H
V=a2*2a=2a3
2009ж
№10 (17 рұсқа№24)
Радиусы R, биіктігі Н-қа тең цилиндрге табаны цилиндр табанының біріне іштей сызылған, ал төбесі оның келесі табанына тиісті болатын дұрыс төртбұрышты пирамида іштей сызылған. Пирамиданың толық бетінің ауданын табыңыз.
SO=H, OD=R.
Sт.б-?
AD=2R
AB=x
AD2=AB2+BC2
x2+x2=4R2
x2=2R2
Sтаб=AB2
Sтаб=2R2
Sб.б=P*A (А-пирамиданың апофемасы)
AB=R
P=4R
A2=H2+(AB/2)2
A=
Sб.б=*4R*=2R
Sт.б=2R+2R2=2R(+R)
ҮІІІ бөлім. Конус
Достарыңызбен бөлісу: |