Пример №3
Найти y′ функции y=sin3(5⋅9x)−−−−−−−−−√7.
Решение
Для начала немного преобразим функцию y, выразив радикал (корень) в виде степени: y=sin3(5⋅9x)−−−−−−−−−√7=(sin(5⋅9x))37. Теперь приступим к нахождению производной. Так как y=(sin(5⋅9x))37, то:
y′=((sin(5⋅9x))37)′(3.1)
Используем формулу №2 из таблицы производных, подставив в неё u=sin(5⋅9x) и α=37:
((sin(5⋅9x))37)′=37⋅(sin(5⋅9x))37−1(sin(5⋅9x))′=37⋅(sin(5⋅9x))−47(sin(5⋅9x))′
Продолжим равенство (3.1), используя полученный результат:
y′=((sin(5⋅9x))37)′=37⋅(sin(5⋅9x))−47(sin(5⋅9x))′(3.2)
Теперь нужно найти (sin(5⋅9x))′. Используем для этого формулу №9 из таблицы производных, подставив в неё u=5⋅9x:
(sin(5⋅9x))′=cos(5⋅9x)⋅(5⋅9x)′
Дополнив равенство (3.2) полученным результатом, имеем:
y′=((sin(5⋅9x))37)′=37⋅(sin(5⋅9x))−47(sin(5⋅9x))′==37⋅(sin(5⋅9x))−47cos(5⋅9x)⋅(5⋅9x)′(3.3)
Осталось найти (5⋅9x)′. Для начала вынесем константу (число 5) за знак производной, т.е. (5⋅9x)′=5⋅(9x)′. Для нахождения производной (9x)′ применим формулу №5 таблицы производных, подставив в неё a=9 и u=x: (9x)′=9x⋅ln9⋅x′. Так как x′=1, то (9x)′=9x⋅ln9⋅x′=9x⋅ln9. Теперь можно продолжить равенство (3.3):
y′=((sin(5⋅9x))37)′=37⋅(sin(5⋅9x))−47(sin(5⋅9x))′==37⋅(sin(5⋅9x))−47cos(5⋅9x)⋅(5⋅9x)′=37⋅(sin(5⋅9x))−47cos(5⋅9x)⋅5⋅9x⋅ln9==15⋅ln97⋅(sin(5⋅9x))−47⋅cos(5⋅9x)⋅9x.
Можно вновь от степеней вернуться к радикалам (т.е. корням), записав (sin(5⋅9x))−47 в виде 1(sin(5⋅9x))47=1sin4(5⋅9x)−−−−−−−−−√7. Тогда производная будет записана в такой форме:
y′=15⋅ln97⋅(sin(5⋅9x))−47⋅cos(5⋅9x)⋅9x=15⋅ln97⋅cos(5⋅9x)⋅9xsin4(5⋅9x)−−−−−−−−−√7.
Ответ: y′=15⋅ln97⋅cos(5⋅9x)⋅9xsin4(5⋅9x)−−−−−−−−−√7.
Пример №4
Показать, что формулы №3 и №4 таблицы производных есть частный случай формулы №2 этой таблицы.
Решение
В формуле №2 таблицы производных записана производная функции uα. Подставляя α=−1 в формулу №2, получим:
(u−1)′=−1⋅u−1−1⋅u′=−u−2⋅u′(4.1)
Так как u−1=1u и u−2=1u2, то равенство (4.1) можно переписать так: (1u)′=−1u2⋅u′. Это и есть формула №3 таблицы производных.
Вновь обратимся к формуле №2 таблицы производных. Подставим в неё α=12:
(u12)′=12⋅u12−1⋅u′=12u−12⋅u′(4.2)
Так как u12=u−−√ и u−12=1u12=1u−−√, то равенство (4.2) можно переписать в таком виде:
(u−−√)′=12⋅1u−−√⋅u′=12u−−√⋅u′
Полученное равенство (u−−√)′=12u−−√⋅u′ и есть формула №4 таблицы производных. Как видите, формулы №3 и №4 таблицы производных получаются из формулы №2 подстановкой соответствующего значения α.
Пример №5
Найти y′, если y=arcsin2x.
Решение
Нахождение производной сложной функции в данном примере запишем без подробных пояснений, которые были даны в предыдущих задачах.
Ответ: y′=2xln21−22x−−−−−−√.
Пример №6
Найти y′, если y=7⋅lnsin3x.
Решение
Как и в предыдущем примере, нахождение производной сложной функции укажем без подробностей. Желательно записать производную самостоятельно, лишь сверяясь с указанным ниже решением.
Ответ: y′=21⋅ctgx.
Пример №7
Найти y′, если y=9tg4(log5(2⋅cosx)).
Решение
Достарыңызбен бөлісу: |