Найти производную функции


! Обратите внимание на приоритет (порядок) применения правил



бет5/11
Дата11.12.2019
өлшемі287,51 Kb.
#53450
1   2   3   4   5   6   7   8   9   10   11
Байланысты:
производная сложной функции

! Обратите внимание на приоритет (порядок) применения правил: правило дифференцирования сложной функции применяется в последнюю очередь.+

Пример 13

Найти производную функции 



Это пример для самостоятельного решения (ответ в конце урока).

Пожалуй, хватит на сегодня. Хочется еще привести пример с дробью и сложной функцией, но такой пример принципиально ничем не отличается от двух последних заданий, единственное отличие – вместо правила  применяем правило .

Для закрепления темы рекомендую статью Сложные производные. Логарифмическая производная. Помимо рассмотрения дополнительных примеров, есть и новый материал! После изучения третьего урока вы будете очень уверенно себя чувствовать в ходе дальнейшего изучения математического анализа. Если задания покажутся слишком трудными (у всех разный уровень подготовки), то сначала посетите страницу Простейшие типовые задачи с производной, там рассмотрено ещё порядка 15-ти производных.



Желаю успехов!

Ответы:

Пример 2: 

Пример 4:  Указание: перед дифференцированием необходимо перенести степень наверх, сменив у показателя знак .

Пример 7: 

Пример 9: 

Пример 11: 

Пример 13: 

Мы уже рассмотрели понятие сложной функции. Следующий этап — нахождение производной. Легче всего понять, как находится производная сложной функции, рассматривая конкретные примеры. 



Если y=f(u), где u=u(x), то есть y — сложная функция, то производная сложной функции находится по следующему правилу: y’=f'(u)·u'(x), то есть производную внешней функции f надо умножить на производную внутренней функции u. На первых порах нам поможет разобраться, как находится производная сложной функции для каждой конкретной функции, следующая таблица:

  

Кроме того, полезно помнить следующие формулы:



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   11




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет