Задачи к контрольной работе


Тема 3. Формула полной вероятности. Формула Байеса



бет26/41
Дата15.05.2024
өлшемі342 Kb.
#202298
түріКонтрольная работа
1   ...   22   23   24   25   26   27   28   29   ...   41
Байланысты:
Варианты контрольной работы ТВ и МС- ЗАО 2010

Тема 3. Формула полной вероятности. Формула Байеса.
Два из трех независимо работающих элементов устройства отказали. Найти вероятность того, что отказали первый и второй элементы, если вероятности отказа первого, второго и третьего элементов соответственно равны 0.2, 0.4 и 0.3.
Тема 4. Повторение испытаний (формула Бернулли, формула Пуассона, теоремы Лапласа)
Вероятность найти белый гриб среди прочих равна ¼. Какова вероятность того, что среди 300 грибов будет 75 белых?
Тема 5. Дискретные случайные величины, закон распределения вероятностей
Из двух орудий поочередно ведется стрельба по цели до первого попадания одним из орудий. Вероятность попадания в цель первым орудием равна 0,3; вторым – 0,7. Начинает стрельбу первое орудие. Составить закон распределения дискретной случайной величины Y – числа израсходованных снарядов вторым орудием, определить функцию распределения, математическое ожидание и дисперсию.
Тема 6. Непрерывные случайные величины, функция и плотность распределения
Случайная величина X задана следующей плотностью распределения вероятностей

Требуется найти: для  = 2, β = 2π:

  • постоянный параметр С;

  • функцию распределения случайной величины X;

  • математическое ожидание и дисперсию случайной величины X;

  • вероятность попадания случайной величины X в интервал [– β/4, β/4].

Тема 7. Выборки и их характеристики
Изучается с. в. X — число выпавших очков при бросании игральной кости. Кость подбросили 60 раз. Получены следующие результаты:
3, 2, 5, 6, 6, 1, 4, 6, 4, 6, 3, 6, 4, 2, 1, 5, 3, 1, 6, 4, 5, 4, 2, 2, 4, 2, 6, 3, 1, 5,
6, 1, 6, 6, 4, 2, 5, 4, 3, 6, 4, 1, 5, 6, 3, 2, 4, 4, 5, 2, 5, 6, 2, 3, 5, 4, 1, 2, 5, 3.
1. Что в данном опыте-наблюдении представляет генеральную совокупность? 2. Перечислите элементы этой совокупности. 3. Что представляет собой выборка? 4. Приведите 1-2 реализации выборки. 5. Оформите ее в виде: а) вариационного ряда; б) статистического ряда. 6. Найдите эмпирическую функцию распределения выборки. 7. Постройте интервальный статистический ряд. 8. Постройте полигон частот и гистограмму частостей. 9. Найдите: а) выборочную среднюю; б) выборочную дисперсию; в) исправленную выборочную дисперсию и исправленное среднее квадратическое отклонение; г) размах вариации, моду и медиану.


Достарыңызбен бөлісу:
1   ...   22   23   24   25   26   27   28   29   ...   41




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет