«Математикалық анализ 1»


Жоғары шегі айнымалы интегралдың туындысы



бет14/33
Дата01.08.2020
өлшемі0,63 Mb.
#75947
1   ...   10   11   12   13   14   15   16   17   ...   33
Байланысты:
d9e40045-91c1-11e3-8e6b-f6d299da70eeУМКД матан 1курс 2-сем

2. Жоғары шегі айнымалы интегралдың туындысы.

[a,b] сегментінде үздіксіз y=f(x) функциясы берілсін. интегралын қарастырайық. Жоғары шегі айнымалы болатын интеграл кезкелген х-тің функциясы болады .

Теорема. Жоғары шегі айнымалы болатын интегралдың туындысы интегралдау айнымалысы жоғары шегімен алмастырылған интеграл астындағы функцияға тең болады .

Теорема. Кезкелген үздіксіз функция f(x) тің алғашқы функциясы болады, соның бірі интегралы болады.

3. Ньютон-Лейбниц формуласы.

Жоғары шегі айнымалы болатын интегралдың туындысы туралы теорема интегралдың қосынды мен шекке көшусіз ақ анықталған интегралды есептеудің жеңіл жолын көрсетуге көмектеседі. Сондықтан, егер F(x)-f(x) функциясының бір алғашқы функциясы болса, онда I(x)=F(x)+C немесе (*) болады.

болғандықтан, (*) теңдікте х=а қойсақ, болады. Бұдан C=-F(a) болады. Олай болса, болады. Егер х=в болса, (**) болады. Бұл (**) формула Ньютон-Лейбниц формуласы деп аталады. Ол анықталған интегралды есептеу үшін қолданылады. F(b)-F(a) айырмасын белгілейміз. . Осы белгілеуді пайдаланып, Ньютон-Лейбниц формуласын былай жазуға болады. .



Достарыңызбен бөлісу:
1   ...   10   11   12   13   14   15   16   17   ...   33




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет