Тема 1. Классическое и статистическое определение вероятности Группа из 25 человек должна выбрать 3 человек на студенческую конференцию. Сколько вариантов такого выбора существует?
Тема 2. Геометрические вероятности В любые моменты времени промежутка длиной Т равновозможны поступления в приемник двух независимых сигналов. Приемник не различает сигналов (забит), если разность между моментами поступления сигналов будет меньше τ. Определить вероятность того, что приемник будет забит.
Тема 3. Формула полной вероятности. Формула Байеса. Из 12 лотерейных билетов 5 выигрышных. Билеты вытягивают по одному без возвращения. Во второй раз был вытянут выигрышный билет. Какова вероятность того, что и в первый раз был вытянут выигрышный билет?
Тема 4. Повторение испытаний (формула Бернулли, формула Пуассона, теоремы Лапласа) Частица пролетает последовательно мимо шести счетчиков, каждый из которых независимо от остальных отмечает ее пролет с вероятностью р=0.8. Частица считается зарегистрированной (событие А), если она отмечена не менее чем двумя счетчиками. Найти вероятность того, что частица будет зарегистрирована.
Тема 5. Дискретные случайные величины, закон распределения вероятностей Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, определить функцию распределения, математическое ожидание и дисперсию данной дискретной случайной величины.
Тема 6. Непрерывные случайные величины, функция и плотность распределения Случайная величина X задана следующей плотностью распределения вероятностей