Отчет 0 с., кн., 69 источников


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ



бет13/14
Дата31.01.2023
өлшемі0,71 Mb.
#166972
түріОтчет
1   ...   6   7   8   9   10   11   12   13   14
Байланысты:
ru 64697 1073218 1607324094

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ



  1. Krichever I.M. Topological minimal models and dispersionless Lax equations // Communications in Mathematical Physics. 1992. - Vol. 143. - P. 415-429.

  2. Kodama Y. A method for solving the dispersionless KP equation and its exact solutions // Physics Letters A. -1998. - Vol. 129(4) - P. 223-226.

  3. Kodama Y., Gibbons J. A method for solving the dispersionless KP hierarchy and its exact solutions. II // Physics Letters A. - 1989. – Vol. 135, Issue 3. – P. 167-170.

  4. Kodama Y., Gibbons J. Integrability of the Dispersionless KP Hierarchy, Proc. 4th Workshop on Nonlinear and Turbulent Processes in Physics. - 1990. – P. 166.

  5. Manakov S.V., Santini P.M. The Cauchy problem om the plane for the dispersionless Kadomtsev-Petviashvili equation // JETP letters. – 2006. - Vol. 83. - P. 462-466.

  6. Manakov S.V., Santini P.M. On the solution of the dKP equation: the nonlinear Riemann-Hilbert problem, longtime behaviour, implicit solutions and wave breaking // J. Phys. A: Math. Theor. – 2008. - Vol. 41 (5). – P. 055204.

  7. Takasaki K., Takebe T. SDiff(2) KP hierarchy // International Journal of Modern Physics A. - 1992. Vol. 07, supp01b.P. 889-922.

  8. Takasaki K., Takebe T. SDiff(2) Toda equation Hierarchy, Tau function, and symmetries // Letters in Mathematical Physics. – 1991. - Vol. 23.3. - P. 205-214.

  9. Takasaki K. Dispersionless Toda hierarchy and two-dimensional string theory // Communications in Mathematical Physics. – 1995. - Vol. 170(1). - P. 101-116.

  10. Takasaki K. Toda lattice hierarchy and generalized string equations // Communications in Mathematical Physics. -1996. - Vol. 181(1). - P. 131-156.

  11. Guha P., Takasaki K. Dispersionless hierarchies. Hamilton-Jacobi theory and twistor correspondences // Jour. Geom. Phys. – 1998. - Vol. 25 (3-4). – P. 326-340.

  12. Takasaki K. Symmetries and tau function of higher dimensional dispersionless integrable hierarchies // Journal of Mathematical Physics. - 1995. - Vol. 36(7). - P. 3574- 3607.

  13. Zakharov V.E. Benney equations and quasiclasical approximation in the method of the inverse problem // Func. Anal. Appl. – 1980. - Vol. 14. - P.89-98.

  14. Konopelchenko B. G. Quasiclassical generalized Weierstrass representation and dispersionless DS equation // J. Phys. A: Math. Theor. – 2007. - Vol.40.

  15. J. C. Brunelli. Dispersionless Limit of Integrable Models // Braz.J.Phys. – 2000. - Vol..30. – P. 455-468.

  16. Demskoi D. K., Sokolov V.V. On recursion operators for elliptic models // Nonlinearity. – 2008. – Vol.21, - P.1-13.

  17. Odesskii A.V., Sokolov V.V. Non-homogeneous systems of hydrodynamic type possessing Lax representations // Nonlinearity. – 2008. – Vol.21. - P.1253-1264.

  18. Yi G. On the dispersionless Davey-Stewartson system: Hamiltonian vector fields Lax pair and relevant nonlinear Riemann-Hilbert problem for dDS-II system // Lett Math Phys. – 2020. – P. 445–463.

  19. Yi G. On the dispersionless Davey-Stewartson hierarchy: Zakharov-Shabat equations, twistor structure and Lax-Sato formalism. [arxiv: 1812.10220].

  20. Sergyeyev A. New integrable (3 + 1)-dimensional systems and contact geometry // Lett. Math. Phys. - 2018. – Vol.108. - P.359-376.

  21. Sergyeyev A. Integrable (3+1)-dimensional system with an algebraic Lax pair // Applied Mathematics Letters.- 2019. – Vol.92. - P.196-200.

  22. Sergyeyev A. Integrable (3+1)-dimensional systems with rational Lax pairs // Nonlinear Dynamics. – 2018. – Vol.91, no. 3. - P.1677-1680.

  23. Szablikowski B.M., Blaszak M. Meromorphic Lax representations of (1+1)- dimensional multi-Hamiltonian dispersionless systems // J. Math. Phys. – 2006. – Vol.47. – P.092701.

  24. Blaszak M., Szablikowski B.M. From dispersionless to soliton systems via Weyl-Moyal like deformations // J. Phys. A: Math. Gen. – 2003. – Vol.36. - P.12181.

  25. Blaszak M., Szablikowski B.M. Classical R-matrix theory of dispersionless systems: II. (1+1)-dimension theory // J. Phys. A: Math. Gen. – 2002. – Vol.35. - P.10325.

  26. Bogdanov L.V., Pavlov M.V. Six-dimensional heavenly equation. Dressing scheme and the hierarchy // Physics Letters A. – 2019. – Vol.383. – P.10-14.

  27. Myrzakulova Z., Myrzakulov R. Dispersionless limits of integrable magnetic equations. -[DOI:10.13140/RG.2.2.25820.64649].

  28. Myrzakulova Z. Integrable dispersionless magnetic equations: Lax representations and conservation laws. [DOI:10.13140/RG.2.2.25820.64649].

  29. Gerdjikov V. S., Mikhailov A. V., Valchev T. I. Reductions of Integrable Equations on A.III-type Symmetric Spaces // J. Phys. A: Math. Theor. – 2010. – Vol.43. - P.434015.

  30. Nugmanova G., Zhunussova Z., Yesmakhanova K., Mamyrbekova G., Myrzakulov R. Integrable Heisenberg Ferromagnet equations with self-consistent potentials // International Journal of Mathematical, Computational, Statistical. – 2015. - Vol.9. - P.472-475.

  31. M. Lakshmanan // Phys. Lett. A. – 1977. - Vol.64, 53-54.

  32. Myrzakulov R., Vijayalakshmi S., Nugmanova G., Lakshmanan M. A (2+1)-dimensional integrable spin model: Geometrical and gauge equivalent counterpart, solitons and localized coherent structures // Physics Letters A. – 1997. –Vol.233, P.391-396.

  33. Myrzakulov R., Vijayalakshmi S., Syzdykova R., Lakshmanan M. On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear schrödinger equations // J. Math.Phys. – 1998. – V.39. – P.2122-2139.

  34. Myrzakulov R., Lakshmanan M., Vijayalakshmi S., Danlybaeva A. Motion of curves and surfaces and nonlinear evolution equations in (2+1) dimensions // J. Math. Phys. – 1998. – vol.39. – P.3765-3771.

  35. Myrzakulov R., Danlybaeva A., Nugmanova G. Geometry and multidimensional soliton equations // Theoretical and Mathematical Physics. 1999. - Vol.118. - P.347-356.

  36. Myrzakulov R., Nugmanova G., Syzdykova R. Gauge equivalence Between (2+1)-Dimensional Continuous Heisenberg Ferromagnetic Models and Nonlinear Schrodinger-Type Equations // J. Phys.A: Math and Gen. - 1998. - Vol.31. - P.9535-9545.

  37. Myrzakulov R., Daniel M., Amuda R. Nonlinear spin-phonon excitations in an inhomogeneous compressible biquadratic Heisenberg spin chain // Physica A. – 1997. - Vol.234. - P.715-724.

  38. Myrzakulov R., Makhankov V.G., Pashaev O.K. Gauge equivalence SUSY and classical solutions of OSPU (1, 1/1)-Heisenberg model and nonlinear Schrodinger equation // Letters in Mathematical Physics. – 1989. - Vol.16. - P.83-92.

  39. Myrzakulov R., Makhankov V.G., Makhankov A. Generalized coherent states and the continuous heisenberg xyz model with one-ion anisotropy // Physica Scripta. – 1987. - Vol.35. - P.233-237.

  40. Myrzakulov R., Pashaev O.K., Kholmurodov Kh. Particle-Like Excitations in Many Component Magnon-Phonon Systems // Physica Scripta. – 1986. - Vol.33. - P.378-384.

  41. Anco S.C., Myrzakulov R. Integrable generalizations of Schrodinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces // Journal of Geometry and Physics. – 2010. - Vol.60. – P.1576-1603.

  42. Myrzakulov R., Rahimov F.K., Myrzakul K., Serikbaev N.S. On the geometry of stationary Heisenberg ferromagnets // Nonlinear Waves: Classical and Quantum Aspects. – 2005. – P.543-549.

  43. Myrzakulov R., Serikbaev N.S., Myrzakul K., Rahimov F.K. On continuous limits of some generalized compressible Heisenberg spin chains // Journal of NATO Science Series II. Mathematics, Physics and Chemistry. – 2004. – Vol.153. - P.535-542.

  44. Myrzakulov R., Mamyrbekova G., Nugmanova G., Lakshmanan M. Integrable (2+ 1)-dimensional spin models with self-consistent potentials // Symmetry. – 2015. – Vol.7. – P.1352-1375.

  45. Myrzakulov R., Mamyrbekova G., Nugmanova G., Yesmakhanova K., Lakshmanan M. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations // Physics Letters A. – 2014. – Vol.378. – P.2118-2123.

  46. Myrzakulov R., Martina L., Kozhamkulov T.A., Myrzakul K. Integrable Heisenberg ferromagnets and soliton geometry of curves and surfaces // Nonlinear Physics: Theory and Experiment. II. World Scientific. – 2003. - P. 248-253.




  1. Myrzakulov R. Integrability of the Gauss-Codazzi-Mainardi equation in 2+1 dimensions // Mathematical Problems of Nonlinear Dynamics. – 2001. - Vol.1. - P.314-319.

  2. Chen Chi, Zhou Zi-Xiang. Darboux Tranformation and Exact Solutions of the Myrzakulov-I Equations // Chin. Phys. Lett. – 2009. – Vol.26. - P.080504.

  3. Chen Hai, Zhou Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation // Chin. Phys. Lett. – 2014. – Vol.31. - P.120504.

  4. Yesmakhanova K.R., Nugmanova G.N., Wei-Zhong Zhao, Ke Wu. Integrable inhomogeneous Lakshmanan-Myrzakulov equation. – 2006. [nlin/0604034]

  5. Zhen-Huan Zhang, Ming Deng, Wei-Zhong Zhao, Ke Wu. On the integrable inhomogeneous Myrzakulov-I equation. [arXiv: nlin/0603069].

  6. Martina L, Myrzakul K., Myrzakulov R., Soliani G. Deformation of surfaces, integrable systems, and Chern–Simons theory // Journal of Mathematical Physics. - 2001. - Vol.42. - P.1397-1417.

  7. Yersultanova Z.S., Zhassybayeva M., Yesmakhanova K., Nugmanova G., Myrzakulov R. Darboux Transformation and Exact Solutions of the integrable Heisenberg ferromagnetic equation with self-consistent potentials // International Journal of Geometric Methods in Modern Physics. – 2016. – Vol.13. - 1550134

  8. Myrzakul A., Myrzakulov R. Integrable Motion of Two Interacting Curves and Heisenberg Ferromagnetic Equations // Abstracts of XVIII-th Intern. Conference ”Geometry, Integrability and Quantization”. - 2016.

  9. Myrzakul A., Myrzakulov R. Integrable motion of two interacting curves, spin systems and the Manakov system // International Journal of Geometric Methods in Modern Physics. – 2016. – Vol.13. - 1550134.

  10. Myrzakul A., Myrzakulov R. Darboux transformations and exact soliton solutions of integrable coupled spin systems related with the Manakov system. – 2016. [arXiv:1607.08151].

  11. Myrzakul A., Myrzakulov R. Integrable geometric flows of interacting curves/surfaces, multilayer spin systems and the vector nonlinear Schrodinger equation // International Journal of Geometric Methods in Modern Physics. – 2016. - Vol.13. - P.1550134. [arXiv:1608.08553].

  12. Myrzakulova Z., Myrzakul A., Nugmanova G., Myrzakulov R. Notes on Integrable Motion of Two Interacting Curves and Two-layer Generalized Heisenberg Ferromagnet Equations. - [arXiv:1811.12216].

  13. Bekova G., Yesmakhanova K., Shaikhova G., NugmanovaG., Myrzakulov R. Inte- grable Flows of Curves/Surfaces, Generalized Heise nberg Ferromagnet Equation and Complex Coupled Dispersionless Equation. - [arXiv:1812.02152].

  14. Bekova G., Nugmanova G., Shaikhova G., Yesmakhanova K., Myrzakulov R. Geometric formulation and soliton solutions of the Myrzakulov-LXXIII equation and the complex short pulse equation. – 2018.

  15. Bekova G., Nugmanova G., Shaikhova G., Yesmakhanova K., Myrzakulov R. Coupled Dispersionless and Generalized Heisenberg Ferromagnet Equations with Self- Consistent Sources: Geometry and Equivalence. - [arXiv:1901.01470].

  16. Myrzakulov R. et al. Real/Complex Short Pulse and Myrzakulov-XV equations with self-consistent sources. – 2019. - DOI:10.13140/RG.2.2.17852.49280.

  17. Valchev T. I., Yanovski A. B. New Reductions of a Matrix Generalized Heisenberg Ferromagnet Equation. - [arXiv:1802.03591].

  18. Gerdjikov V.S., Grahovski G.G., Mikhailov A.V., Valchev T.I. On Soliton In- teractions for a Hierarchy of Generalized Heisenberg Ferromagnetic Models on SU (3)/S(U (1)U (2)) Symmetric Space // J. of Geometry and Symmetry in Physics. – 2012. – Vol.25, P.23-55. [arXiv:1201.0534].

  19. Calderbank D., Kruglikov B. Integrability via geometry: dispersionless differential equations in three and four dimensions. - [arXiv:1612.02753].

  20. Constandache A., Das A., Popowicz Z. Generalized Benney Lattice and the Heavenly Equation. - [arXiv:nlin/0204053].

  21. Kamchatnov A.M. Nonlinear Periodic Waves and Their Modulations: An Introductory Course // World Scientific. – 2000. – P.383.

  22. Tsarev S.P. The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method // Math. USSR Izv. - 1991. – Vol.37. – P.397.

  23. Isoard M., Kamchatnov A. M., Pavloff N. Wave breaking and formation of dispersive shock waves in a defocusing nonlinear optical material. – 2019. – Vol.99. – P.053819



Достарыңызбен бөлісу:
1   ...   6   7   8   9   10   11   12   13   14




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет